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Introduction

Coding capacity of additive Gaussian channels with memory is one of the

major areas of open problems in basic information theory. Even for the case

of the stationary discrete-time channel with a simple energy constraint, only

recently has a complete proof been given [15] for the information capacity,

which one can then apply toward a rigorous and complete proof of the coding

capacity. For nonstationary discrete-time and continuous-time channels with

or without memory, there are apparently no published results on coding

capac i ty.

Moreover, in the classical conti.:uous-time channel, the model for which

results have beei known constitutes a proper subset of the class of stationary

channels, and there is a very large universe of stationary channels not

belonging to this subset.

This paper gives results on coding capacity for a large class of

channels, which may be stationary or nonstationary, with or without memory.

The formulation is somewhat different and more general than that usually

followed. The generality permits one to focus on channels where

dimensionalizy of the code word set is a key component of the constraints. In

the classical setup, the elements of a code are limited in their time

duration. The present paper replaces this with a constraint defined by an

increasing family of finite-dimensional subspaces. The classical discrete-

time channel is then a special case of this framework, and several

applications to these channels are given. These applications include

nonstationary single-user and multi-user channels. For example, it will be

seen that this formulation shows that it is possible to use a code word set of

arbitrarily iarge cardinality as transmission time n -+ - with the maximum

decoding error probability converging to zero, while the classical analysis
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gives zero capacity and a maximum decoding error of one for any non-zero rate.

Another interesting result, for the memoryless non-stationary Gaussian

channel, is that the noise covariance can have eigenvalues of infinite

multiplicity which have no effect on coding capacity.

The approach also provides results for continuous-time channels. In the

classical continuous-time channel, the transmission time T is permitted to be

arbitrarily long in determining capacity. Then, by transmitting at a rate

below capacity and for a sufficiently long time, the coder has the ability to

use an arbitrarily large code word set while achieving arbitrarily small

maximum decoding error probability. In this formulation, transmission rate is

the rate of increase in the log of the cardinality of the code word set, as

the transmission time is increased.

Suppose, however, that the transmission time T is limited, as will

ordinarily be the case in practice. One may then ask: if arbitrarily large

transmission energy is available, is it possible to choose a code word set of

arbitrarily large cardinality while achieving arbitrarily small maximumi

decoding error probability? The mechanism for accomplishing this, if it is

possible, will consist of using an increasingly-complex coding-decoding

structure. This can be interpreted as an increase in dimensionality of the

code word set. The "rate" of transmission is now the rate of increase one

obtains in the log of the cardinality of the code word set as its

dimensionality is increased. A higher rate implies that the coding-decoding

structure can be less complex for a specified cardinality of the code word set

and a specified maximum error probability.

It is shown here that for some such channels it is not possible to

achieve arbitrarily small maximum decoding error probability when using code

word sets of arbitrarily large cardinality, for any positive rate. A special

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 2
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case of these channels is the Holsinger-Gallager model of the stationary

Gaussian channel analyzed in [11] (when the time duration is fixed).

Moreover, for such channels it is shown that any non-zero rate leads to a

maximum decoding error probability of one. However, for a large class of

continuous-time channels of fixed time duration, it is possible to achieve

arbitrarily small decoding error probability with code word sets of

arbitrarily large cardinality; those channels are characterized, a number of

examples are given, and their capacity is obtained.

Upper bounds on coding capacity are obtained for a large class of

nonGaussian channels. Several examples are included. For the class of

channels considered, it is shown that coding capacity is equal to information

capacity when the noise is Gaussian. Apparently, this has only recently been

explicitly stated for the classical discrete-time channel (with memory) [8].

Emphasis here is on obtaining the capacity. However, Theorem 2 gives

bounds on error probability for Gaussian channels based on results of Ebert

[10] and Gallager [11].

In addition to obtaining specific new results for coding capacity of a

large class of additive channels, the development brings out the essential

importance to the capacity of the limit points of the spectrum (the essential

spectrum) of the operator defining the relationship between the noise

covariance and the energy constraint on the code words.

The proof of the general expression for the capacity is based on the

spectral theory for self-adjoint operators in Hilbert space, including the

integral representation (as given, for example, in [17]). That proof, and

those of several other necessary mathematical results, is contained in [6].

The emphasis here is on applications.

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 3



Problem Framework

In the next few sections, the setting and definitions for the coding

capacity problem will be given. In order to illustrate these concepts and

definitions, the classical discrete-time channel will be frequently employed.

It is assumed that the noise sample paths belong to a real separable

Hilbert space H. where H has inner product <-.> and associated norm 11-11. The

noise is described by a set function IN. pN will be a finitely-additive

probability defined on the cylinder sets of H: the collection of all sets of

the form {x: (<x,u 1 >..... Xun>) E D }. where n 1. Dn is a Boiel -et in Rn.

and u1 1 .... un are any n elements of H. Thus, if H0 is any finite-dimensionai

subspace of H, and P is the projection operator in H having range H0 . let p0

be defined on the Borel sets of H0 by o(A) = pNx: Pox E Al. p0 is then a

countably-additive probability. Our basic assumptions on the noise are that

a) f H<x,y>2 dAN(x) < - all y in I, and

b) fH<x.y>dpN(x) = 0 for all y in H.

Assumption (a) means that pN has a covariance operator RN. which is

linear, bounded. and non-negative, and also implies that the noise mean

exists. Assumption (b) is chat the noise has zero mean. We can assume WLOG

(without loss of generality) that RN is strictly positive on H, RN is defined

as <RNU.v> = fH <u.x><vx>dpN(x) for uv in H.

pN is Gaussian if for any y E H the distribution function P is Gaussian,

P y(a) = {lix: <x.y> al.

Formulation of Constraints

Let RW be a strictly positive covariance operator in H satisfying

range(RN) C range(RS).

(Hn n 1 I, will denote a family of finite-dimensional subspaces of Fi.

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 4



such that for all n 1.

a) Hn C Hn+1

b) dim(H n) = n.

Let P be the projection operator with range equal to H , and definen n

Sn = 7Pn.n" Rn is then strictly positive on H n. For x in H . the norm

WIIw,n is defined by IIxIIW,n = Ilyll, where y is the unique element of Hn that

satisfies R ,ny = x. Formally, we write 1ix1w n = n for x in H

although Rw n does not exist on H. it is well-defined on Hn

The constraints on the code words are now as follows: For each n > 1.

the admissible code words x ..... belong to H and satisfy i1 n2 _nP

foL i = 1,2.....K(n).

As an important example of such constraints, consider the classical

discrete-time 'mmoryless channel with a simpl, energy constraint. This can be

formulated in the above terms by taking H = t2 and P the identity, giving

Hn= {x in t2 : x = 0 for i > n}
2 n 2

11x1 = I x i  for x in H

Another example involves the continuous-time channel with fixed

transmission time, T. In this case, H can be taken as L2 [0.T]. and H as then

linear span of {e 1 e2 .... en}, where {e n n 1) is an infinite orthonormal

set in L2 [OT]. It will always be assumed that a process with paths in

L2 [OT] is product-measurable.

It can be noted that for channel capacity calculations the constraint

x2IIIn 2 nP (for code words in Hn) for every n is equivalent to the constraint
I 2

limsup 11x1x2 I P.
__w n W ,n

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 5



Definition of Coding Capacity

Let (H 11-11 Wn) define the constraints. Let pN be the noise probability

on H. and let n be the probability on H induced from pN by the projection

noperator P n: Ii[A] = IiNjx: P n x Al. for A any Borel set in Hn, It is not

required that iN be countably additive; thus, for example, the discrete-time

memoryless stationary Gaussian channel is included in this formulation.

For fixed n 1, a code (k,n.e) [1] is a set of k code words {x1 ......x

and k disjoint Borel sets in H such that the elements of {x 1 .... xk} obey the

constraints, and

IN{y: Pny + x i C Ci -efor i = 1.2....,k.

Note that this last probability inequality can be written as

n{ y + x C Ci} I - e, i = 1.2. k.

A real number R > 0 is an admissible rate if there exists an infinite

niR

sequence of codes ([e 3. ni.f_ ) with e - 0 as i -* ,. where [r] is the

integer part of the real number r.

The coding capacity is then the supremum of the set of admissible rates.

As can be seen, this definition of coding capacity contains that of the

classical discrete-time channel as a special case, defining the constraint

family (Hn , 11-11W~n) as in the previous section. More generally, the capacity

gives an indication of the effect on size of the code word set that can be

obtained by increasing the dimensionality of the code word set, while

requiring that liminf e = 0.
nn4

The constraint on the transmitted signal is given in terms of a

.L.

covarance operator RW in H. A basic assumption is that range(P ) contains

range(R.). The existence of such an operator, and the assumption on range

Cod.Caj,.zf C.Cs-Llss-36 - 10/9/89 - 6



relations, are necessary in order that the information capacity be finite [5];

moreover, when pN is Gaussian, it will be seen that finite information

capacity is necessary in order to have finite coding capacity. Thus. the

formulation of the problem is quite general (so long as an average-type

constraint is to be used). Under this assumption, there exists a self-adjoint

operator S in H such that R~ N= R;(I+S)P., where (I+S) exists and is bounded

(see [5, Prop. 1] for ramifications of this fact). The limit poinLs of the

spectrum of S will play a key role in this paper. These limit points (the

essential spectrum of S) consist of all eigenvalues of infinite multiplicity,

all limits of sequences of distinct eigenvalues, and all points of the con-

tinuous spectrum [17, p. 363]. "Essential spectrum" is the modern terminology

for this set; it will be denoted by a ess(S). The continuous spectrum of S

consists of all real numbers X such that the range of (S-XI) is not closed.

In many applications, the constraint will be given by a time-invariant

linear filter f with transfer (frequency) function f. In such cases, 1f1 2

defines a spectral density and thereby the operator RW.

Expressions for Evaluation of the Coding Capacity

n

The noise has probability IN and covariance operator RN. 4N is the noise

probability on Hn, defined by n{C) = P x E C} for C a Borel set in H
n n

RW is the covariance operator defining the constraint on the code words.

RW, n nRWPn and RN n = PnRNP Let I be the identity in H n; let Sn be the

self-adjoint operator mapping H into Hn defined by RN,n =

11S xi S 0 if x is orthogonal to H . Since S is self-adjoint as an operatorn n n

in H n it has n orthonormal eigenvectors belonging to H with corresponding
n n

eigenvalues ,n ..2 "

Absolute continuity of probabilities will be frequently encountered. If

Cod. Cap.f CACs Liba-36 - 10/9/89 - 7



p and u are two finitely-additive functions on the cylinder sets of H, then

p << v and pi - u will denote, respectively. absolute continuity of p w.r.t. 0

and mutual absolute continuity of p and v. p << v if and only if for every

e > 0 there exists 6 > 0 such that v(A) < 6 => p(A) < 6 for any cylinder set A

i-i H.

The bound on coding capacity for nonGaussian channels will involve the

relative entropies HN(N) and {HGN(N), n 1}. Let p be the Gaussion noise

measure (perhaps not countably additive) having covariance operator RN. In

this framework, the definition is H (N) = sup H N(N), where H N(N) is the
nntn (Nn

entropy of p with respect to pG: R((N) = ,fnlog curse.
entropy "N"GN 0 R n[ n j4_0

H n(N)= if is not absolutely continuous with respect to PN" 2 "< P
GANGN' G N

is necessary in order to have H N(N) finite, where p' denotes the restriction

of W to the closed linear span of U H n

n2l n

The relative entropy H(N) can be defined in terms of differential

entropy for the discrete-time channel. Suppose that N = (N1 .N2 ..... n) hasn n

zero mean and a probability density p . Then, d/d G- exists, since Lebesije

measure and nondegenerate Gaussian measure are mutually 3hcnlutely continuous

c_ The differential entropy is

H -fn n[n n n(

where An denotes Lebesgue measure on Rn. Thus,

n n

Hn(N) =-flo -ix]dx) -flog --- X)jd.()

- (,) + n(,,),

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 8



so that H (N) = H"(GN) - Hn(N).

The rel. ive entropy will enable us to give an upper bound for

nornaus- ±n channels such that Tia I H (N) < -. The bound will be seen to be
n

equal to the capacity for the Gaussian channel with noise probability 1GN

whenever lim L Hn-(N) = 0. A particular case of this is when HGN(N) < -. To
n

illustrate that this occurs in some important applications, suppose that

H = L2 [O.T] and that wN is defined by a mean-square continuous stochastic

process (Nt). Suppose also that (Nt) = (Vt+St), where (Vt) is a m.s.

continuous Gaussian process and (St) is a process independent of (Vt) and such

that the paths of (S t) belong (w.p. 1) to the RKHS of the covariance of (V).tt

Suppose also that the Gaussian process with the (St) covariance has sample

paths in the RKHS of the covariance of (V ). w.p. 1. Then. HGN(N) ( o.

This result is a special case of the following.

Prop. 1. For any choice of (Hn). HGN(N) < - in each of (a) - (d) below.

(a) p is Gaussian with covariance RV,. i has covariance RS = RIRAS V V

for T trace-class, and p= VpiIS (convolution).

(b) H = R2 or H = L2 [O.T]. V is a Gaussian process with sample

paths a.s. in H and covariance operator RV , S is a possibly non-Gaussian

process Independent of V with sample paths a.s. in H and with covariance

operator RS. N = S + V. and Rs = R--r4 for T trace-class.

(c) V. S, and N are as in (b). S' is the Gaussian process with the

same covariance function as S. and the paths of S' belong to range(R4)

with probability 1.

(d) H = L2[0.T]. S. V, and N Are defined as in (h), V and S are

wide-sense stationary and have rational spectral densities (P and 4S' arid

f *5
-~V

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 9



Proof. (b) and (c) are equivalent [2]. (d) is a special case of (b) [2. 13].

(b) is obviously a special case of (a). The proof will be given for (a).

writing j. N as 4S+V" Let pvof x(A) = .LV{y: x+y E A}. where x E H and

fx(y) = x + y. The following statements follow from [2]:
-1

a) p.of x  PV a.e. dJs(x)

b) pV-4N

c) PN -4N

Consider now the channel with additive Gaussian noise PV' and let its

inforntion capacity C(P) be sup I(p.y), where the sup is over all

probabilities ji x such that pX[range(RS)] = I and E 11x1,2 ( P. where 1lxl1 -

IRN xll. The map g: (x.y) - [(dpvof x)/djiv](y) is B[H]xB[H]/1B[1R] measurable

[4]. For any pX satisfying the constraint, we have [3] I(p.XY) =

% Trace R.%RXR - HV(X+V). Trace RV P, from the constraint. Since

I(wty) 0, this requires HV(X+V) < m. Finally, since N = X + V.

H~r(N) f J(log )dN = l'N
-HV~(N) + j'Iog ~Ldjft 9 H,.V(N) + l[og Ydp,

Since PV and PtGN are mutually absolutely continuous and Gaussian, HGN(V) < 03

Hence, HGN(N) < W. 0

The model Just described arises in one of the most frequently-encountered

nonGaussian situations: when the medium contains additive narrowband

nonGaussian noise (S t) that is independent of the additive wideband Gaussian

receiver noise (V t). The above case applies, for example, if the receiver

noise is stationary with spectral density O(X) = 1/(X2 +a2 ), and the ambient

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 10



medium noise is stationa,-y and nonGaussian with spectral density

4I(X) = 1/B(N). where B(/) is a polynomial of order 4.

Consider now the finite-dimensional channel defined as foltows. The

additive noise has probability p. The input to the channel is described by a

probability pX on H. satisfying E I1x. 2  nP. Let c (TlP) be the

information capacity of this channel. Tha follcwirg well-known result is

fundamental to our results.

Lemma 1 [11. 14].

N(n) B(n)+l h(n) rB(n)+1 n
5 log J CP(nP) I lqgiL-n-l I+ HGN(N )

where 1 3 2 n "'" I are the eigenvaluLs of S N(n)= sup(i <nn

,, B(n)}, and B(n) is defined by

N(n)

i=l

Preliminary Results

Our program is to first obtain expressions for llim IC(nP). P.1" will
n

then be followed bv. the result that the coding capacity is equal to

n i- C((nP) when N)is Gaussian and that this value is an upper bound for
n

ni
coding capacity for the nonaussian processes satisfying 1m _ H (N) = 0.

nCN
n

Among the difficuties In evaluation of lim I C(nP) is that for each value of
n

n
n one obtains n expression in terms of the egenvalues of the operator Sn

The range of Sn is contained in H n; Sn always has a complete orthonormal set

of eigenvsctors, and its range space has d'mension n. Moreover, the

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 11



eigenvalues of Sn need not be contained in the set of eigenvalues of Sn+I ; in

fact, the eigenvalues of Sn+1 may not include a single eigenvalue of Sn .

The desired result is an expression for capacity in terms of the operator

S. where R N = IYI+S)R. and the increasing subspaces (Hn). This requires

that one first determine relations between S and S and in particular,

between the spectral properties of the two operators. Some idea of the

complexity of this procedure may be gained by observing that, in general, S

need not have any eigenvectors. Examples of such S include the following:

H = R2 (discrete-time channel) with S a Toeplttz matrix; H = L2 [O.T], with

[Sx](t) _ trx(t) a.e. dt. some real number r ) 0.

In [6]. it is shown that S = VnSV n where V is a partially isometric

operator. Vn is isometric on range(RiP . zero on [range(RPn] and its

range is equal to Hn. Let HW S range(Rwn. The eigenvalues (ni) of Sn and
n

their multiplicity are then the same as those of the operator PW SP . where
n n

PW is the projection operator with range equal to HW [6].
n n

{ei. i 1} will be used to denote an o.n. set in H such that H =

span{e 1 . en}. Similarly. {u i , i 1} will denote an o.n. set such that

lHWn = span{ul . ... Un}. Note that one of these sets is complete for H if and

only if the other is complete; completeness is equivalent to lIP x - xli -* 0 for

all x in H.

Since Vn is an isometry from HW  to Hn, it follows that Vn ui e. forni I
n

i < n. This is obviously true for n = 1; suppose that it holds for n = K.

Then, since HwK C HW  and N C HK+l . the statement must hold for n = K+l,

thus for all values of n.

Let n be fixed and define G () [# elgenvalues of S < A]. G, is a
n nnI

left-continuous non-negative step function, bounded above by 1. The family

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 12



{G n n l} will be seen to completely define (for a given set of constraints)

the coding capacity. The importance of aess(S) to characterizing {G n n > 1}

is demonstrated in Prop. 2 below. First, let V[S,(Hn)] be the set of all 7 in

IR such that for any K and any e > 0. there exists n K such that the number

of elements in the sequence ()3i,) satisfying i- <r e is > K.

To see that the set V[S,(Hn)] determines lim [# eigenvalues of S < X],
n1n nn

let X be fixed. Then lim G (X) = I T # o n
n n

[N i' i+)], where -1 = hI ( ... ( XK+ 1 = X. If lim Gn () > 0. then there
n

exists at least one X1 ( X such that lim I [# eigenvalues in [Ni.hi+l) ] > 0.
11 n

n

This requires that [Ni+ 1 l) contain at least one point in V[S, (Hn)]. Thus,

for any X. lir Gn(N) is determined entirely by those Y < X such that
n

T'im- I [# eigenvalues of S in (--e. 7+e)] > 0 for every e > 0. and any such 1
n n1

n

must belong to V[S, (Hn)].

Prop. 2 [6".
(1) Suppose that {un , n 1} is a c.o.n. set for H. Then

aess(S) C V[S.(Hn)].

(2) Let lL and 0U denote the smallest and largest points in ess(S).

Then V[S,(H n)] C [0L.6U

The results of Prop. 2 might lead one to hypothesize that

V[S,(Hn)] C a ess(S). that V[S,(H n)] = aess (S) when {u n n 1) is complete,

and that lim - [# eigenvalues of S ( N] is independent of the choice of any
n1 nn

c.o.n.s. {u . n I. These three properties would be very useful.

Unfortunately. all three are false, in general, although the first two will

hold for some important choices of (H1n).

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 13



Prop. 3 [61.

(1) If {un , n 2 1} is not complete for H, then V[S,(H)] fl aess(S) =

is possible.

(2) If {un , n 1} is complete for H, then:

(a) V[S,(Hn) ] C aess (S) is not always true.

(b) Let QA(S.(Hn)) be the eigenvalues On of Sn such that--S n QAS nH) a

1)1-xl A> 0 for all x in a (S). Then TlimLQ(S(H ca
i ess n n Cf

be strictly positive.

(c) If {u . n 1} is complete for H, then lim 1# eigenvalues of
n nn

Sn > X) need not be independent of the choice of {un ' n > 1>

Coding Capacity

The following theorems give a general result for coding capacity. See

[6] for the proof of Theorem 1 and the Corollary.

Theorem 1.

B Bn+-

n+l n 1 H,

B Bn+1

Bn
and FngX) dF X

where B is defined by p n f 1 (B Nn n n

and F (A) = # eigenvalues of S X).n n n
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(2) If urn' C(nP) > 0. and lim {# eigenvalues of S < X} exists forn w n n

all X in I, then

A f-I log[ +XdF(X) T i - &(nP)
n

I+B
log[i.-]dF(X) + rin I H-n (N)

n

where F is a distribution function defined by

F(X) = lrn -# eigenvalues of S X} = lim F (X)

n-4w n_-- n

and the constant B is defined by

P = I[B-X]dF(X).

(3) If 1irm 0-(N) = 0. then~ 1 d I (nP) = 0 if and only if
n n

Tn-m i{# eigenvalues of S < X} = 0 for all X in IR. This requires

that S be unbounded and occurs in particular if +- is the only limit

point of a(S).

Remarks. (1) In part (2). the same result holds if F(X) E lim Fn (X) exists
n--P

for all X < B. where B is defined by P = ?BI[B-X]dF(X).

(2) In the statement of Theorem 1. the probability distributions

{Fn , n 1} could be replaced by (Cn. n 1. where Gn = -(# eigenvalues of Sn

strictly less than X]. This follows because the integrands are continuous

functions, and are zero at the upper limit of the integral.

Corollary. If lim - ( = 0. then bounds on - (nP) are given by
n GNnnn n

log(l + P/X) lim I (nP) log(I + P/Amln)
n
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where Xmin is the smallest limit point in the spectrum of S. and X max is

the largest. Moreover. these bounds can be attained by proper choice of

(H n).

An alternative form of Theorem 1 can be given, as follows.

Theorem IA. Suppose that B is the largest number such that

B
P l im f [Bn-']dFn(A). Then

n -1

B B +1
li - log l]dFn(X) li- I

nn
n n

..rB rB+11 ~
T-m o dF n(N) + nSn If--I

where (Fn) and (Bn) are defined as in Theorem 1. If no such B exists,

and Timi-n (N) = 0, then -im I (nP)= 0.
n nn n

The following result, together with Theorem 1 (and IA), gives the coding

capacity. Part (b) of this theorem can be proved from first principles,

beginning with Feinstein's Lemma. However, Theorem 1 enables a pr'of to be

given based upon results due to Ebert [10] and Gallager [11]. This approach

not only shortens the exposition, but also provides error bounds.

Theorem 2. Let CW(P) be the coding capacity.

(a) C(P) -1im i- C(nP); when PN is Gaussian and Cw(P) = 0. then the
n

maximum decoding error probability is equal to one for any rate > 0

(i.e.. liminf en = 1).
n

(b) If pN is Gaussian, then C(P) = 1im C(nP).
n

(c) Suppose that pN is Gaussian. Then, for any fixed n. the maximum
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decoding error probability en is bounded by

E -1~ s exp -T[R(B~r.p])]
n Fn-J 2

where 0 p 1. s = p/(2[l+p] 2(1 + B[n,p]). 6 can be taken equal

to 1/s. and Yn is an integration-normalizing constraint [11].

Bin.p] is defined by

1N(n~p) (l+p) 2(B[n.p]-Pn.)(B[n,p]+l)

P =- 1 7 -

i=1 (l+p)(l+B[n.p]) - p(l+ n )

N(np) = sup{i n: (i < B[np]}
i

and
pnP N(n.p 1  1+Brn,p] ]

T[R(B[n.p])] 2(l+B[n.p])(+p) og
=1 (l+p) (l+B[n, p]-p(l+]n) j

The corresponding number of code words is [eR(B[nP]) ], where

N(n' p) B[n,p1 + 1
R(B[n,p]) = l [

i=I +

Proof. The fact that im n (nP) is always an upper bound on coding capacityn

follows by a standard application of Fano's inequality; see, for example. p.
168 of [16]. The resulting inequality for a code (k nn, n) is en >

q(nP) + log 2 - 1 i (nP) as an upper bound on capacity.
I log k . This gives lim -nn nn

Suppose now that pN is Gaussian. and assume that (b) of the theorem holds. If

Cw(P) = 0. then for any positive number R. I CP(nP) < R for all sufficiently

large n. so that lii -PI q ) = 0. giving 6  _+ I for any positive rate R.
n

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 17



To obtain the lower bound for Cw(P) when tiN is Gaussian, one can apply

the results of Ebert [10], [11]. They involve a vector channel, consisting of

a set of n parallel one-dimensional Gaussian channels where the noises in the

different chaunels are mutually independcnt with varinces i. I < n. The

code words are vectors x which satisfy the constraint ? x2 < nP. With this
1 i

model, Ebert shows the existence of a code ([eR(B[nP]) ],n.en ). with R(B[np])

defined as in (c) of the theorem, and 6n obeying the upper bound given there.
N(n)

In those equations, p = 0 gives T[R(B(n))] = 0 and P = 1 7 [B(n) - Pi.]
i=l

T[R(B[n,p])] > 0 for p > 0. and Bin,p] decreases (for fixed P) as p increases.

Thus, for every p > 0. one has an admissible rate R , defined byp

- B[n'p] I  B[n+l]
R = lim R(B[n,p]) = (by Theorem 1) lim f log P+ I1 dFN(X).

P n n n -1 X j n

This gives a lower bound on capacity of

B[nBn]  r [ n p
r

+ llim R P= lI m lim $4 f lgLX+1 dFn (X).
P-4 p--10 n -1

Since f log[nLP1I1 dFn(A) is non-decreasing as p decreases for fixed n,
0

it follows that

lmRB[n.O] °-[n.O]+1l] (N).1
li R lim %f Y gd X{+ I _J _

p-40 n -1

Moreover, if for An > 0. B[n,0] + 1 - An > 0, B[n,p] = B(nO) - A n , then

-Bin 0] rB[ 1 Bin p] [B[n,p]+l]
li-m log 0' 1dFn(N) - i f ogdF Nn n I n

B[n.O] pB[n'O]]] n
n -l' nFn - L f 1 n(XIdimN S log

n 1 LB~n~pl~j n n B[n.0] + An - 1

and since B[n,0] is bounded away from -1, we obtain
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B[n 0] gB[nO]+l dFn(X)l imR P= li m j log LX +1 Fn
P-1 n -1

N(n)
where P = n n) [B[n,O] - n,] and N(n) = sup{i n: (i < Bin,O]}.

ni=

To apply this result, one proceeds similarly to [11]. For fixed n, the2 2

channel considered here has code words in H constrained by lixil 2 lHyll 2
n Wn=

nP. where y is the unique element of Hn satisfying Ry = x. The noise

has covariance operator + S)R. Thus, this is the same ashascoarane peatr N. n = Ri.n(' n + nN -

the Hn channel with code words Yl'.'.Yk satisfying !.y12 (nP anz- with the

additive noise having covariance In + S n. Expanding all code words and noise

sample paths in terms of the orthonormal eigenvectors of I + S n one obtainsn n

a channel whose output is the sum of a vector of n independent parallel

Gaussian channels, with the outputs of the n channels being

mutually-orthogonal elements of H . The i th channel has additive noise withn

covariance operator (1 + )v@vn , and the code words (yk) can be written as

~~in~ where 2 n th
ni 2 .,[ nP. yki v being the input to the i parallelYk = i=1kli ' whr -i=1 Yki YIi

channel when the code word Yk is selected. Since the individual channels have

outputs that are mutually orthogonal in H n . the probability of correct

decoding for the summed output is the probability that all of the individual

channel outputs are correctly decoded. The Ebert results thus apply, and part

(b) of the lemma is proved. Part (c) follows. 0

Applications: Discrete-Time Channels

For the discrete-time memoryless Gaussian channel with RW = I. the

theorems give easily-obtained new results for nonstationary channels. In this

case, . = I+S; since S is diagonal, the eigenvalues of In + Sn are

I n, where I+S = diag[al.a 2 .... ]. The spectral limit points 0 1'....OK} of
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I+S are the limit points of the eigenvalues (ai) of RN. These limit points

and theiL 'relative frequencies" completely characterize the capacity for this

simple channel, whereas in the general case the family of distribution

functions (Fn) can converge to a distribution function with points of increase

at points that are not limit points of the spectrum of I + S. For the

stationary memoryless discrete-time channel with RW = I and RN = a2I, (J2 is

the only limit point of I + S. and so by Prop. 2 one obtains the well-known

result that (P)= log l + 2. This is also the value of CW(P) if RW I

and RN = a21 + M. where N is any operator in H such that M is compact. This

follows from the fact that cuorpact operators in a Hilbert space are exactly

those oppratc:s that have zero as the only limit point of their spectrum.

Thus, if the noise is of the form N = N1 + N2. N1 stationary and uncorrelated

with variance a2, and N2 independent of 1 with E2[ X2] <_, then the coding2 1 21 nj

capacity is again 2 log[1 2 -] Of course, we are assuming as always that all

processes have zero mean.

These remarks follow from the following result.

Prop. 4. Let H e 2' Hn = {x: xI = 0 for i 2 Ai}. RW = I. and

RN = diag[a ,. i 1 1]. Suppose that p. is Gaussian and that (a,) has the

limit points 81 < 2 < ... < K . Then

J rB,yJn [_

C (P) = .. log '
n =1 j

where -Y = Mn/n, Mn is the number of elements in the sequence (a i < n)

belonging to ( J-6. 8 +a). a > 0 satisfies 2r < min{9 j+l-j: ij 0.

8 0.} (Bn) is defined by P = j~ ,n(B - 8 ), and J is the largest
0 J=laj n

integer K such that
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mI nP ii ! ii(Gj - e)
n i J

If lim - _ ir exists for I J with J as defined below, then

CW{P )  = 2 -r . I log ui=I

where J and B are defined by P = 2j (B - 8). with 9 the largest

element of {8. 8 K} satisfying P 1 =1i ( - ed.

Proof. Direct application of the theorems.

The case where ( n) has an infinite set of li.it point. is presumably of

marginal interest; the capacity in that case is less easy to visualize, but is

also obtained immediately from the theorems.

Heuristically. one can view this channel as equivalent to K parallel

independent discrete-time memoryless channels. The kth channel has non-zero

noise components only for those indices j such that j - k < e. For fixed

n, a code word for the composite channel is then given by y = (yl.y 2 . ...yK),

where Yk is the component of the code word for the kth channel and must

satisfy Ykj = 0 if - = , 0 if J > n, while . k 2< nP.

The effect of Prop. 4 is then to replace the original channel by K

parallel independent channels, the kth channel being a memoryless stationary

channel with noise variance 8k . The coder then uses the K channels according

to the probability distributions (Itn), the (8). and P.

Using this viewpoint, the results of Prop. 4 then show that the coder

chooses his code word as y = (yly 2 . .yK)' where Yk is the component of the

code word that is used as an input to the kth channel. For fixed n. he

chooses the code word y according to the constraint . y2  -k(B _ 8k)

n J=l k kn k
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J. with 0 if > n or k 1 kad . = 0, k > J. In theYk aj J=l

In 1 ,
case where limn k k exists for k J. this gives the constraint n<

1p-M k knJ I k.i

(- 0 ), k J. n? 1 Y y 2 * 0. > J. where B = [P 4- 0i=~kk J=l I Thek Jlk = kkll Ij

capacity is then C (P) =IJ= ~ 1IfC(P), where C§(P) is the capacity of the jth

channel subject to the above constraint.

If the sequence of noise variances (ai. i 1) consists only of numbers

in the finite set (OV i K}, then Prop. 4 shows that even for a noise

variance 0 that is repeated infinitely often, such a component of the noise

will have no effect on capacity if the relative frequencies (-Jn) are such that
n

lim i = 0. However, if P is small and a limit point Oi of (ak. k > 1) is so
n

large that it does not appear in the expression for capacity (i.e., i > J as

given in Prop. 4), then this limit point may still affect the capacity if

V fl nT-- in> 0. and will always affect capacity if liminf I > 0. This may be
i i

n n

viewed as somewhat unexpected, since such a 0 i would represent one of the -K

parallel channels" for which the effective input is zero. However, this is a

point where the heuristic "parallel channel" analogy breaks down; this is due

to the fact that the "Ith channel" is present for a fraction i . of the

available time, n, and the coder is defining capacity in terms of transmission

time (i.e., part of the allowable dimensionality is being used by a "channel"

which conveys no information).

Prop. 4 (and the theorems, for more general channels) has obvious

applicaticnq to some multiuser channels. For example. consider a time-

division multiaccess Gaussian channel defined as follows. There are K

th
sources. For transmission up to time t = n, with n 1, the j source uses

nnthe channel a fraction 7 = n(j)/n of the time. The noise added to the code

word of the jth source has variance 0 (for the n(J) th transmission by the jth
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source) when the overall transmission time is n. The sources have the overall

.L 1K .j ) 2
constraint y =I i)l j P for each n 1. Prop. 4 then shows how the

n J=l i=1 ji

available power should be allocated among the K sources, and gives the

capacity, Examples of such channels include that defined by an earth-orbiting

satellite with K widely-separated ground-based transmitters, or a channel

where K sources feed into a central relay station.

This example is for a very simple case of multiaccess channels. More

general problems can be analyzed. However, the basic idea is the same; one

identifies a source (or group o: sources) with a limit point (or set of limit

points) in a(S), and the corresponding (_n). n I. is the fraction of time

the source uses the channel up to time n. This is for the memoryless

discrete-time channei; the theorems can be used to analyze more general

channels. A particular aspect of this model is that the fraction of time that

each source uses the channel can vary with time; similarly for the noise

environment faced by each source.

One can also use Prop. 4 (and the theorems) to analyze jamming channels.

For example, if a jammer must vary his energy over different time periods.

Prop. 4 will permit the calculation of capacity for a given set of ({.-.P}.

More generally, as will be discussed elsewhere, the theorems permit one to

determine the jammer's minimax strategy, subject to various types of

constraints on the jamming signal.

It can be seen that the best choice of (Hn) from the viewpoint of

maximizing capacity will be the natural choice H = {x: x = 0. 1 > n} only inn

special situations. If a1 < 02 < ... < 8K are the limit points of the noise

variances, and Pw is Gaussian. then an optimum choice of (n) is given by

H = A ri. where
n n

An = (x: xi = 0, i > k(n)},
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B = {x: xi =0, lao l },

k(n) = smallest integer such that la- o[ ( e for exactly n values

of i k(n).

and

< 82 - 81'

This definition of (H n) gives

Cw(P) - 4 log[l + P/O],

which is the maximum possible value for a given S. Of course, this squares

perfectly with intuition; the original channel is transformed into a "channel'

having limiting noise variance 0 1 at the expense of increasing the

transmission time required to achieve a specified decoding error

The choice of Hn = {x: x1 = 0, 1 > n} gives the optimum (H ) when k is

n
Gaussian if and only if limsup 1 = 1. Thus, if choice of (Hn) is part of the

n

system design, then it is only in this case that the capacity is equal to that

which is obtained in the classical Gaussian channel. Conversely, the

classical channel gives the worst possible choice of (Hn) if and only if

im = 0 for all i K-1. For example, consider a channel with noise

n

variances (ai) given as follows:

ai = 2 1 j j any integer

= 2000 otherwise.

Then 0 1= 2, 02 = 2000: if (H n) is defined by Hn = {x: x1 = 0. i > n}. thenn

= O so that CW(P) = 0. However, consider (Hn defined by
n

H = {x: x =0 . 1 ) n2 } flB. where

B = {x: x = 0. 1 s j2 for any integer J}
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If AN is Gaussian, then this is an optimum choice of (Hn) and gives

Cw(P) = A log[l + P/2]. One should notice the differences in definition of

capacity. However, examples that are even more striking can be constructed

for channels with memory; it is possible to use a code word set of arbitrarily

large cardinality with maximum decoding error going to zero as transmission

time n -* -. even though the classical channel has zero capacity. This can be

seen from Theorem 1.

In the above analyses, the cost of transmission time is not quantified.

In the classical channel, one is implicitly assuming that transmission time

must be minimized for a code word set of dimension n. The formulation given

here permits one to remove this constraint. When PN is Gaussian. Theorem 2

can be used to determine tradeoffs between the transmission time, maximum

decoding error, and cardinality of the code word set. for each n, for various

choices of (H)"

As a final remark on the memoryless channel, one may note that for the

2stationary nonGaussian channel with noise variance a , Shannon obtained the

result [18] that for RW = I,

lir I C(nP) C(P.G) + q log e 2 H( G ) - 2 H ( N)

2where C is the zero-mean Gaussian random variable with variance a , C(PG) is

the capacity when G is the noise, and H denotes differential entropy. As

previously seen,

log e 2 H (G) - 2 H(N) HG(N) (N)

here HG(N) denotes the relative entropy of the random variable N to the r.v.
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G; the last equality follows by the channel being memoryless.

The theorems also permit an immnediate calculation of the known result for

capacity of the stationary discrete-time channel with memory when a simple

energy Qonstraint is used.

Prop. 5. Let H =t2 , R.w = I, and H n= ix in R2: x, = 0. i ), with RN,

given by a spectral density 40. Then. if lim H n(N) = 0.
n

Turn -1 G(nP) f [log 0-ldx
n n{x: O(x) B 0 )

where B 0satisfies

= j' {x (x [B0 - O(x)]dx.

For this application, the distribution function F is defined by 2iwF(x)

m~y: (1(y) x}. where mn is Lebesgue measure on vw]

Proof. In this case, P n= V n, so

G (N) = -(number of eigentralues of P (I+S)P < N + l}.
n n n n

Now, by the Toeplitz distribution theorem [12]

lrn G (X) = _L I[XQ1()d

when m is Lebesgue measure. and the result follows from Theorem 1. 0

Bounds on rapacity of this channel can also be given. Suppose that

mn 4(x) M. lxi I w . If im -L H! (N) = 0, then % log[I + 1
n nCII I MI

lii~n ) I M4 og1 For PNGaussian, the fact that 17m nL (nP)
n n

F f1 [B]N) o[.ydA with P I I[B(,P(X))[B - 41(X)]dX has been
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known/assumed for many years. It is credited to Pinsker under the assumption

of a stationary Gaussian signal [15]. However, it is apparently only recently

that a complete proof has been given allowing a general nonstationary signal

process [15]. In [15], it is assumed that * is continuous; that assumption is

not needed here.

Applications: Continuous-Time Channels of Fixed Duration

In this section the code words and noise paths are elements of L210,T] ,

where T < - is fixed. The available energy per transmitted code word is PO:
2

for each fixed n and a given (Hn) and R.. one has I1xIw PO for each code

word x. The question is whether or not arbitrarily small maximum decoding

e-ror probability can be achieved by nking P0 arbitrarily large without

limiting the cardinality of the code word set. It can be assumed that

limiting the cardinality of the code word set is equivalent to limiting its

dimensionali ty.

This problem is fundamentally different from that of the classical

continuous-time channel, wherein the code words are limited to an energy of TP

and T is permitted to become arbitrarily large. In the present case. for a

fixed value of PO' one can set P0 
= nP. Theorem 2 can then be used to

determine an upper bound on the maximum decoding error probability. Of

course, this requires that the eigenvalue4 (1i) be determined for sufficiently
i

many values of n. so that the expressions given in Theorem 2 can be evaluated.

For a given value of PO = nP, one then determines B[n,p] for suitable values

of p (p in (0,1)) and chooses the values of n and p that give the most

satisfactory compromise between the size of the code word set and the maximum

decoding error probability.

In the balance of this section. attention will be focused on determining

Cod.Cap.of CACs-Liss-36 - 10/9/89 - 27



capacity. As previously discussed, a "rate" is the rate of increase in

log[cardinality of the code word set] as a function of increasing

dimensionality. R is then an admissible rate if the maximum decoding error

can be made arbitrarily small by indefinitely increasing log[cardinality of

the code word set] at the rate R. From Theorem 2. if t , is Gaussian and the

capacity is zero, then the maximum probability of decoding error converges to

one as the cardinality of the code word set becomes arbitrarily large, for any

positive rate. We begin with an example illustrating this situation.

Let H = L2[OT] and suppose that (Nt) has covariance operator having an

inverse which is a densely-defined differential operator of order 2p. For

example, if p = 1, N could have covariance function e- a (t - s ) (a > 0) or

min(ts). Let RW be an integral operator whose inverse is a densely-defined

differential operator of order 4p. Thus, if p = 1. RW could be defined by a

covariance function corresponding to a spectral density which behaves, for

JAI - -, as OW()) = 1/ 4 k , where k 1. Then, if (Nt) is Gaussian, or more

generally when -im I_(N) = 0, the capacity is zero, regardless of the
n

definition of the subspaces (Hn). This result follows from the fact that

RN = Rw(I+S)N, where I+S is the inverse of a compact operator, thus has a

single limit point in its spectrum, equal to +1.

Some stationary channels with rational spectral densities defining both

RN and RW constitute a special case of the above example. A complete set of

results can be given for all stationary channels where RN and RW are defined

by rational spectral densities.

Prop. 6. Suppose that H = L2[0.T]. Let (Nt) be stationary and Gaussian

with rational spectral density *N' and suppose that RW is defined by a

rational spectral density 0W. Then. for any choice of (Hn):
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a) the coding capacity will be non-zero if and only if

li;4m (X) -a > 0;

b) the capacity is given by C*(P) = 4 log[l + aP].

This also gives an upper bound on the coding capacity if N is nonCaussian

and the following conditions are satisfied: (Nt) = (Gt + Vt) where (Gt)

is stationary and Gaussian with rational spectral density OG' (Vt) is

independent of (Gt). possibly nonGaussian, stationary or nonstationary.

and such that E L*CXIL dX < - for the sample paths v of (Vt) where

c lim (X)
v is the Fourier transform of v. Then. C(P) = log 1 + P .

Proof. When RW and RN are defined by rational spectral densities OW and 'N'

then it can be shown from well-known results [2], [13] that R.w = N(I+V) .

where the operator V has the following properties:

a) V is bounded if and only if {0W(X)/ON(X) , lxl > 0} is bounded;

b) if OW/0N is integrable over (-c .). then I+V is trace-class;

c) if V is bounded and
lim W()

l IO N(X) - a,

then I+V has a single limit point for its spectrum, equal to a.

%4 -14 % %Using these facts, one notes that since RN = Rw(I+V) R = R(I+S)R. S must

be unbounded with the single limit point +- if VO N is integrable (since I+V

has only zero as a limit point). By Theorem 1 and Prop. 2. Cw(P) is then

zero. If I+V has a as its only limit point, then I + S = (I+V) - I must have

a -1as its only limit point (note that I+V) + (1-a)I = V - al is compact); (b)
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of Prop. 6 follows. The remainder of Prop. 6 can be obtained from the results

of [13]. ,'

As can be seen, there is no "waterfilling" aspect to the statement of

Prop. 6. This is because the operator S has only a single limit point in its

spectrum if H = L2[OT] and RW and RN are defined by rational spectral

densities. The waterfilling interpretation can be applied to Theorem 1; it is

in terms of the family of pure jump distribution functions (Fn), which is

determined from V[S.(Hn)]. It is notable that the results of Prop. 6 are

independent of the value of T.

From (a of Prop. 6. CW(P) = 0 if is N i integrable. This is the class

of channels considered in the Holsinger-Gallager result for the classical

continuous-time channel [11, Sec. 8.5]. T -* -. It may be judged only natural

that C(P) = 0 if T is fixed, since ir L C(TP) is finite, where (TP) is
CW T-4- C

the capacity for the channel restricted to the interval [OT] and with the

constraint EUXIIW2T PT. Since the dimensionality is not constrained in

computing Cj(TP), C€(TP) CP(nP) when T = n. Moreover, when T is fixed, the

capacity is determined in terms of (-CW(nP)). However, if RW and R. are
Y(x)

given by rational spectral densities such that lim - is finite and

non-zero, then the capacity is finite and non-zero for both the classical

channel [7] and (by Prop. 6) the fixed-time channel.

Another result along these lines is the following.

Prop. 7. Suppose that n-m I (N) = 0. that {un , n 1} is complete,
n

and that Aw is the zero-mean Gaussian probability with RW as covariance.

Then, lim1"  (nP)= log[l+P] if pW is absolutely continuous w.r.t.
n
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(with respect to) 1 N. More generally, lim c (nP) log[l +

n

there exists a constant a < 1 such that R a- RN + aRW is strictly

positive definite and uW and N,a are mutually absolutely continuous,

G~awhere P. is the zero-mean Gaussian probability with covariance operator

G.a. A % -Shmdt soha
Proof. If P N .then R. + a.RW =R(I+T)Rw. T Hilbert-Shit ota

RN = Rw(I + [T-aI])R ; since T - al - S has -a as the only limit point of

a(S), the result follows. Note that a ( I is necessary because I + T - al

must be non-negative, requiring T (a-1)I Since T is compact, this can hold

only for a 1. and the case a - 1 violates the basic (and necessary, for

54 -46 -1finite capacity) assumption that RN = Ri(I+S)Rw with (I+S) bounded. For,

if a = 1. then RN + aR1 = Rw + Rw TR and T Hilbert-Schmidt implies that

Rn = RWWA and T'cannot be bounded. 13

The coding capacity of the matched channel (RW = RN) is % log(l+P).

Thus, if --~ GN, then the difference between the two operators RW and RN is

not sufficient to affect the coding capacity. However. if Wi ± AGN' then one

still obtains finite capacity under the assumptions of Prop. 7. but its value

can be greater or smaller than that of the matched channel.

Prop. S. Suppose that rIn '- Hn(N) 0. In order that Cw(P) be more
n CNn

than zero. it is necessary that = RNR with T bounded but not

compact.

Prop. 8 follows immediately from the preceding. (I+S) - = T, so that T

compact implies that (I+S) has +- as the only limit point of its spectrum.

This is actually the situation that holds in the Holsinger-Gallager model.
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The key to interpreting these results lies in the expressions for

information capacity when IN is Gaussian [5]. When S has a single limit point

equal to +0 (as in the case of Example 2 and in Prop. 6 when OW/WN is

integrable), then S has a (ONS ojf etgenvectors and corresponding eigenvalues

{Ni ), X I -. With no dimensionality constraint on the transmitted signal

process, Theorem 3 and Corollary 4 of [5] show that the optimum signal process

(for achieving information capacity) has finite-dimensional support when

PO - rnP is fixed.

It then follows that increasing the dimensionality of the signal space

past the optimum value actually decreases information capacity. This is

consistent with Ti 1 C(nP) = 0 for any fixed value of P.

However. whcn the smallest limit point 0 of S is finite, then for a

K
sufficiently large value of PO -nP, one will have PO + I Ni Ke. where now

i=l

() denotes those (increasing) eigenvalues of S strictly less than 0.

Theorem 2c of [5] then applies, setting the dimensionality as n = M. Let

K = min(L.M), where L is the number of eigenvalues of S strictly less than 0.

Then, permitting HI. to be any M-dimensional subspace, one has [5]

K

% lto +6 +P 0 + ! (lgO)
4(Po) = [1 og + 2o + N++0=1 0

with the constraint given by E 11x112  P Since P = MP. taking M - m gives

lim IG(MP) = log [ + .

Of course, this is an upper bound for the coding capacity, in general.

since (H.) can be any sequence such that H. is N-dimensional. including

sequeqces that are not ordered by inclusion. However, if S has only one limit

point 0 in its spectrum (as in Prop. 6 when 0W(X)/ON( ) -* a s 0) then
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log 1 + ] is in fact the coding capacity, as has been seen from the

corollary to Theorem 1.

The preceding results thus enable one to determine whether or not

arbitrarily small error probability can be achieved while indefinitely

increasing the log of the cardinality of the code word set at some positive

rate, and give the capacity. As discussed, the capacity in this framework is

the supremum of all admissible rates, and the "rate" is defined as [log kn]/n.

where n is the dimensionality of the code word set and k is the number ofn

code words.
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